Iminophosphane und Azadiphosphiridin-imine[☆]

Detlef Barion, C. Gärtner-Winkhaus, Manfred Link, Martin Nieger und Edgar Niecke*

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn

Eingegangen am 30. April 1993

Key Words: Iminophosphanes / Azadiphosphiridine imines / Phosphanes, imino-

Iminophosphanes and Azadiphosphiridine Imines

A variety of bis(alkyl)iminophosphanes R-P=N-R' 3a-e($R = CMe_2Et$, $CMeEt_2$, CEt_3 ; $R' = CMe_3$, CEt_3) and aryliminesubstitued derivatives [$R' = 2,4,6-tBu_3C_6H_2$, $R = CEt_3$ (3f), R = PhCH=CH (3g)] are obtained by base-induced dehydrochlorination from the corresponding amino(chloro)phosphanes R-P(Cl)-N(H)R' 2a-g. Depending on the steric demand of the substituents, the iminophosphanes 3a-d undergo a reversible [2 + 1] cyclodimerization to give the azadiphosphiridine imines R-P(=NR')-P(R)-N-R' 4a-d. The same ring sys-

Iminophosphane mit unzureichender kinetischer Stabilisierung der P/N-Doppelbindung reagieren unter Cyclodimerisierung, die strukturabhängig regioselektiv verläuft^[1]. Hierbei zeigen P-alkylierte Iminophosphane bevorzugt eine [2+1]-Cycloaddition zum Azadiphosphiridin-imin-System^[2]. In einigen Fällen wurde jedoch auch [4 + 1]-Cycloaddition beobachtet^[3]. In monomerer Form stabile Iminophosphane mit dem Strukturelement C-P=N-C kennt man bislang nur mit einem N- und/oder P-ständigen 2,4,6-Tri-tert-butylphenyl-(Mes*-)^[4] bzw. P-ständigen Pentamethylcyclopentadienyl-Rest^[5]. Das einzig bekannte vollständig alkylierte Iminophosphan, 'Bu-P=N-'Bu^[2a], cyclodimerisiert in Lösung bei 25°C bereits innerhalb weniger Minuten zum Azadiphosphiridin-imin. Wir haben daher unsere Untersuchungen auf weitere alkylierte Iminophosphane ausgedehnt. Diese Studien beinhalten ebenfalls [2+1]-Cycloadditionsreaktionen zwischen unterschiedlich substituierten Iminophosphanen sowie erste Strukturuntersuchungen an Azadiphosphiridin-iminen. Des weiteren wird über die Darstellung und Struktur eines Alkyl- und Alkenyl(aryl)iminophosphans berichtet.

Synthese und Cyclodimerisierungen von Iminophosphanen

Als Edukte für die Iminophosphane 3a-g dienten die Aminochlorphosphane 2a-g. Diese sind im Falle von 2a-c in guten Aubeuten durch Umsetzung der Dichlorphosphane 1b-d mit zwei Äquivalenten *tert*-Butylamin (wobei ein Äquivalent als Hilfsbase fungiert) und bei 2d-gdurch Umsetzung der Dichlorphosphane 1a, d, e mit den entsprechenden Lithiumamiden zugänglich. Der anschlie-Bende H/Li-Austausch mittels Lithium-bis(trimethylsilyl)amid führt zu den N-lithiierten Phosphanen^[2a], die unter den gewählten Reaktionsbedingungen (-20° C) unter Salzeleminierung die Iminophosphane 3a-e, g freisetzen. Die Syntem is obtained in the reaction of **3c** with the (arylimino)phosphanes R-P=N-aryl (R = PhCH=CH, Et, Me). However, this cycloaddition results in the formation of diastereomers **4e**-**g** and **4'e**-**g**, respectively. The reaction of Et-P=N-aryl with R-P=N-aryl (R = PhCH=CH, Cl) furnishes (phosphanylamino)iminophosphanes Et(R)P-N(aryl)-P=Naryl **5a**, **b**. The compounds **3f**, **4e**, **f**, and **5a** have been characterized by X-ray structure analyses.

these des *N*-aryl-substituierten Iminophosphans **3f** aus der entsprechenden Vorstufe **2f** gelingt nur mittels der Hilfsbase $LiN(^{t}Bu)Si(CH_{3})_{3}$, wobei für einen quantitativen Umsatz ebenfalls eine erheblich längere Reaktionszeit erforderlich ist.

Von entscheidendem Einfluß für die Geschwindigkeit der [2+1]-Cyclodimerisierung zum Azadiphosphiridin ist bei gegebener Temperatur das Ausmaß der kinetischen Stabilisierung. Die in der Reihe R-P=N-^tBu (R = Me_{3-n}Et_nC; n = 0-3) mit sukzessiven Ersatz von Methyl durch Ethyl einhergehende Erhöhung des relativen Raumbedarfs des Phosphorsubstituenten äußert sich hierbei in einer signifikanten Abnahme der Dimerisierungsgeschwindigkeit. So liefert das bekannte Iminophosphan 'Bu-P=N-'Bu bei Raumtemperatur innerhalb weniger Minuten nahezu quantitativ das entsprechende [2 + 1]-Cyclodimere^[2a]. Im Fall von $\mathbf{R} = \text{EtMe}_2 \mathbf{C}$ (3a) werden innerhalb von 2-3 Stunden 95% des Iminosphosphans in das entsprechende [2+1]-Cyclodimere umgewandelt. Bereits 2-3 Tage erfordert unter gleichen Bedingungen die Einstellung des Gleichgewichtes für $R = MeEt_2C$ (3b) mit einem Produktanteil von ca. 75%. Für das Iminophosphan 3c (R = Et₃C) ist schließlich eine Cyclodimerisierung bei Raumtemperatur praktisch nicht nachweisbar. Erst mehrstündiges Erwärmen auf 40°C führt hier zu einem NMR-spektroskopischen Nachweis des Cyclodimeren. Deutlich geringer ist der stabilisierende Einfluß der Alkylgruppe am Iminstickstoff. So unterliegt das zu 3c isomere, invers substituierte Iminophosphan 'Bu-P= N-CEt₃ (3d) nach 4-5 Tagen einer 50% Umwandlung in das entsprechende Azadiphosphiridin. Die höchste kinetische Stabilität innerhalb dieser Verbindungsklasse wird erwartungsgemäß für das Bis(1,1-diethylpropyl)-substituierte Iminophosphan Et₃C-P=N-CEt₃ (3e) beobachtet, für das sich auch bei mehrtägigem Erwärmen auf 40°C NMR-spektroskopisch keine Cyclodimerisierung mehr nachweisen läßt. Auch für die Iminophosphane **3f**, **g** mit dem sterisch überladenen 2,4,6-Tri-*tert*-butylphenyl-Rest (Mes*) am Iminstickstoff werden keine Folgereaktionen mehr beobachtet.

Die Iminophosphane 3a - e sind gelborangefarbene, stark hydrolyse- und oxidationsempfindliche Öle, 3f, g ist ein violetter bzw. blauer Feststoff.

Schema 1

Cycloadditionsreaktionen zwischen unterschiedlich substituierten Iminophosphanen

Für das Iminophosphan 3c ist aufgrund des hohen sterischen Anspruchs des Phosphor-Substituenten die Cyclodimerisierung weitgehend gebremst, in dem Alkenyl-substituierten Derivat 3g unterbindet dagegen der raumerfüllende N-ständige Arylrest eine Selbstadditionsreaktion dieser Verbindung. Beide Verbindungen reagieren indes miteinander unter [2+1]-Cycloaddition zum Kreuzungsprodukt 4g. Die Bildung entsprechender Cycloaddukte wird ebenfalls bei der Umsetzung der Alkyl(aryl)iminophosphane 3h bzw. 3i mit 3c zu 4e, f beobachtet. Mit einer sterischen Entlastung des Phosphoratoms im Iminophosphan (3g > 3h > 3i) verbunden ist eine signifikante Erhöhung der Reaktionsgeschwindigkeit. In allen Fällen reagiert das Iminophosphan mit dem weniger voluminösen Phosphorsubstituenten (3g-i) als Nucleophil gegenüber 3c. Bemerkenswert ist das Auftreten von Diastereomeren $4'e - g^{[6,7]}$, wobei mit dem sterischen Bedarf des P-Substituenten im Iminophosphan $R-P=N-Aryl \ 3g-i$ in der Reihe R = Styryl > Et > Medie Bildung von 4 in zunehmendem Maße zugunsten von 4' zurückgedrängt wird.

Schema 2

Im Gegensatz zu den [2 + 1]-Cycloadditionsprodukten 4**a**-**d** unterliegen 4**e**-**g** und 4'**e**-**g** keiner Retroreaktion und sind durch fraktionierende Kristallisation aus Et₂O als unzersetzt schmelzende Feststoffe zugänglich. Eine vergleichbare Stabilität war bislang nur von Silylimin-substituierten Azadiphosphiridin-iminen bekannt^[2b].

Versuche, durch Reaktion des Ethyl(aryl)iminophosphans **3h** mit den Iminophosphanen $R-P=N-Mes^*$ [R =PhCH=CH (**3g**), Cl (**3j**)] zu entsprechend aufgebauten Verbindungen zu gelangen, blieben ohne Erfolg. Stattdessen entstehen die (Phosphanylamino)iminophosphane **5a**, **b**, die formal als 1,2-Additionsprodukte von **3g**, **j** an die P/N-Doppelbindung von **3h** angeschen werden können. Diese Reaktion impliziert eine dissoziative Spaltung der Phosphor-Element-Bindung in **3g**, **j**. Die höhere Nucleofugizität des Chloratoms im Vergleich zur Alkenylgruppe ist dabei in Übereinstimmung mit dem spontanen Ablauf der Reaktion zwischen **3j** und **3h**, während demgegenüber **3g** für einen vollständigen Umsatz mit **3h** erheblich längere Reaktionszeiten (ca. 10 Tage) benötigt. Beide Verbindungen **5a**, **b** sind als orangefarbene Kristalle isolierbar.

Schema3

NMR-Spektroskopische und Kristallstrukturanalytische Untersuchungen

Die ³¹P-chemischen Verschiebungen von Iminophosphanen werden im wesentlichen durch den paramagnetischen Term des Abschirmtensors bestimmt, was sich qualitativ in einer linearen Korrelation zwischen δ^{31} P und der niedrigsten Elektronenanregungsenergie für Verbindungen dieses Typs dokumentiert^[8]. Hierbei überstreichen die δ^{31} P-Werte der Iminophosphane mit dem Strukturelement C-P=N-C einen Bereich zwischen $\delta = 520$ (3f) und 195 (Me₅C₅- $P=N-Mes^{*[5a]}$. Die $\delta^{31}P$ -chemischen Verschiebungen der Bis(alkyl)iminophosphane 3a - e liegen am Tieffeldende in einem engen Bereich ($\delta = 471 - 495$) und zeigen beim Ersatz von y-Wasserstoffatomen durch Methylgruppen (Zunahme des induktiven Effekts) einen systematischen Tieffeldshift. Dieser Effekt ist erwartungsgemäß beim Phosphorsubstituenten stärker ausgeprägt (Tab. 1). Unter den bekannten Verbindungen mit dem Strukturelement C-P=N-C markiert das (1,1-Diethylpropyl)(arylimino)phosphan 3f das obere Ende der Werteskala ($\delta = 520$). Im Vergleich dazu ist der Phosphorkern im Styryl(arylimino)phosphan $3g(\delta =$ 389.5) relativ hochfeldverschoben, was möglicherweise als Folge einer konjugativen Wechselwirkung des PN- mit dem benachbarten olefinischen Doppelbindungssystem zu werten ist. Allerdings würde auch die σ-Akzeptorfähigkeit des Alkenylsustituenten im Sinne einer Population der Grenzstruktur [PhCH=CH]⁻[PNAryl]⁺ die Abschirmung erklären^[9].

Tab. 1. ³¹P-NMR-Daten von Bis(alkyl)iminophosphanen

R'	δ ³¹ Ρ
^t Bu ^t Bu ^t Bu ^t Bu Et ₃ C	472.2 ^[2a] 477.5 482.4 488.1 477.3
	t ^{Bu} t ^{Bu} t ^{Bu} t ^{Bu} Et ₃ C Et ₃ C

Strukturuntersuchungen an Iminophosphanen des Strukturtyps C-P=N-C sind rar und beschränken sich auf die Verbindungen Me₅C₅-P=NMes^{*[5a]} und Mes^{*}P=N^tBu^[10]. Mit dem Iminophosphan 3f gelang uns der Zugang zu einer weiteren Struktur. Das Molekül (Abb. 1) liegt in der erwarteten (E)-Konfiguration vor, wobei der Winkel am Imin-Stickstoff mit 124.8(2)° wie in den beiden bekannten Verbindungen dieses Typs^[5a,10] eine nahezu ideale sp²-Hybridisierung aufweist. Der Arylsubstituent (Mes*) ist annähernd orthogonal (95.0°) zur C(1)-N(1)-P(1)-Ebene angeordnet und weicht damit einer konjugativen Wechselwirkung mit dem zentralen PN-Doppelbindungssystem aus. Der PN-Abstand [156.6(2) pm] wie auch der Valenzwinkel am Phosphoratom [104.7(1)°] sind vergleichbar mit denen in Me₅C₅-P=N-Mes^{*[5a]} und in guter Übereinstimmung mit den theoretischen Werten für das Stammsystem (E)-H-P=N-H^[11]. Die Abstände P(1)-C(19) [187.0(3) pm] und N(1)-C(1) [142.5(3) pm] entsprechen typischen Einfachbindungen für diese Elementkombination.

Die Konstitution der Cycloaddukte als Azadiphosphiridin-imine 4 wird durch die NMR-Daten belegt (Tab. 2) und konnte im Fall von 4e, f durch Röntgenstrukturanalyse untermauert werden. Strukturparameter für diesen Verbin-

Abb. 1. Kristallstruktur von **3f**. Ausgewählte Bindungslängen [pm] und -winkel [°]: P(1)–N(1) 156.6(2), P(1)–C(19) 187.0(3), N(1)–C(1) 142.5(3); N(1)–P(1)–C(19) 104.7(1), P(1)–N(1)–C(1) 124.8(2)

Tab. 2. Ausgewählte NMR-Daten der dargestellten Azadiphosphiridin-imine

				12			
	δ ³¹ P			δ ¹³ C	δ ¹³ C [J _{CP}]		
	λ ⁵ Ρ	$\lambda^{3}P$	$^{1}J_{PP}$	$\lambda^5 PC$	λ^{3} PC		
4a	-44.2	16.8	227.6	46.9 [115.8/ 6.3]	37.6 [76.8/5.0]		
4b	-46.4	19.5	228.0	46.9 [112.6/ 6.1]	41.9 [79.8/5.0]		
4c	-48.0	16.1	228.3	50.8 [119.5/ 6.1]	45.7 [83.3/5.0]		
4đ	-48.0	16.1	223	38.1 [117.0/ 7.0]	35.0 [72.0/4.0]		
4e	-75.5	58.5	150.0	20.2 [122.8/18.9]	44.6 [57.4/2.1]		
4f	-65.0	48.9	151.0	27.4 [133.7/15.2]	44.4 [56.9/2.3]		
4g	-73.3	62.3	143.0	123.3 [162.8/18.2]	45.2 [56.2/2.3]		
4'e	-41.8	-2.4	152.2	16.2 [61.6/11.4]	43.1 [71.7/8.0]		
4'f	-42.6	2.7	171.0	27.0 [75.0/12.0]	43.5 [72.6/8.0]		
4'g	-49.4	9.4	143.6	120.6 [95.8/12.0]	43.5 [72.2/8.1]		

In beiden Verbindungen sind die P-ständigen Alkylsubstituenten zueinander cis-angeordnet. Der endocyclische Stickstoff N(1) besitzt eine verzerrte pyramidale Geometrie [337.8 (4e), 337.2° (4f)]. Erwartungsgemäß stark pyramidalisiert ist das endocyclische Phosphoratom P(1) $\lceil 271.6 \ (4e), \ 271.5^{\circ}$ (4f)]. Das Ringsystem nimmt bezüglich des Arylsubstituenten (Mes*) eine (E)-Konfiguration ein, die sich aus dem hohen Raumbedarf des 2,4,6-Tri-tert-butylphenyl-Restes erklärt, wobei der unterschiedliche sterische Anspruch der P-Alkylsubstituenten in 4e und 4f zu signifikant verschiedenen Valenzwinkeln am Imin-N-Atom führt [132.0(2)° (4e); 136.9(3)° (4f)]. Bemerkenswert ist die trans-Stellung des Et₃C-Substituenten zur tert-Butyl-Gruppe, die den Erhalt der Konfiguration im Iminophosphan Fragment 3c anzeigt und auf einen stereoselektiven Reaktionsablauf schließen läßt. Der Dreieckswinkel am vierfachkoordiniertem Phosphoratom P(2) $[54.0(1) (4e), 54.0(1)^{\circ} (4f)]$ ist erwartungsgemäß größer als der am dreifachkoordiniertem Phosphoratom P(1) [47.8(1) (4e), 48.2(1)° (4f)]. Der im Vergleich zu Aza- λ^3 , λ^3 diphosphiridinen höhere s-Anteil in den Bindungen zum P(2)-Atom führt zu relativ kurzen Bindungen im Ring P(1)-P(2) [217.3(1) (4e), 217.7(1) pm (4f)] und P(2)-N(1) [164.5(2) (4e), 166.0(3) pm (4f)] (Tab. 3). Diese Verkürzung wird durch eine drastische Dehnung der P(1)-N(1)-Bindung kompensiert [179.6(2) (4e), 180.2(3) pm (4f)]. Die experimentellen Befunde sind dabei in guter Übereinstimmung mit einer Ab-initio-Studie an der Stammverbindung HN=PH-NH-PH^[11], die das Selbstadditionsprodukt als ein Komplex zwischen zwei Iminophosphanen ausweist.

Abb. 2. Kristallstruktur von 4f

Tab. 3. Ausgewählte Bindungslängen [pm] und -winkel [°] von 4e, f

	4e	4f		4e	4f
P(1)-P(2)	217.3(1)	217.7(1)	P(2)-N(2)	154.3(2)	154.6(3)
P(1)-N(1)	179.6(2)	180.2(3)	P(1)-C(5)	191.4(2)	190.7(4)
P(2)-N(1)	164.5(2)	166.0(3)	P(2)-C(12)	181.5(2)	182.4(4)
P(2)-P(1)-N(1)	47.8(1)	48.2(1)	P(1)-P(2)-N(1)	54.0(1)	54.0(1)
P(2)-P(1)-C(5)	115.1(1)	115.5(1)	P(1)-P(2)-N(2)	124.6(1)	124.0(1)
N(1)-P(1)-C(5)	108.7(1)	107.8(2)	N(1)-P(2)-N(2)	119.0(1)	119.1(2)
P(1)-N(1)-P(2)	78.2(1)	77.8(1)	P(1)-P(2)-C(12)	116.7(1)	115.7(1)
P(1)-N(1)-C(1)	124.8(1)	125.6(2)	N(1)-P(2)-C(12)	114.1(1)	110.3(2)
P(2)-N(1)-C(1)	134.8(2)	133.8(3)	N(2)-P(2)-C(12)	114.4(1)	117.1(2)
P(2)-N(2)-C(13) {C(14)}	132.0(2)	136.9(3)			

Im ³¹P-NMR-Spektrum äußert sich der Dreiringstruktur der Verbindungen 4a - g in zwei Sätzen von Dubletts, deren Aufspaltung (143 – 228 Hz) die direkte Nachbarstellung von zwei Phosphoratomen anzeigt. Ihre Signale unterscheiden sich signifikant in ihrer Lage, wobei das zu hohem Feld verschobene Resonanzsignal (Tab. 2) in [2 + 1]-Cyclodimeren dieses Typs bislang dem dreifach koordinierten Phosphoratom zugeordnet wurde^[2a,b]. Diese Zuordnung ist zumindest aufgrund der nunmehr vorliegenden Ergebnisse an den gemischt substituierten [2 + 1]-Cycloaddukten 4e - gnicht mehr haltbar. So ergibt die Analyse der protonengekoppelten ³¹P-NMR-Spektren, daß in den Verbindungen 4e - g (bzw. 4'e - g) das Et₃C-substituierte dreifach koordinierte Phosphoratom durch das tieffeldverschobene Signal repräsentiert wird. Demzufolge sollte auch in den bislang beschriebenen [2+1]-Cyclodimeren von Iminophosphanen^[2] der dreifach koordinierte Phosphor die größere Entschirmung aufweisen. Die chemischen Verschiebungen für den Phosphor in der Gruppierung $\geq P =$ fallen in einen engen Bereich ($\delta = -75$ bis -41). Ein Vergleich der δ^{31} P-Werte in den Isomeren 4 und 4' zeigt, daß die cis-Anordnung der Alkylsubstituenten (4) hierbei zu einer Abschirmung dieses Phosphorkerns führt $[\Delta \delta = 33(2)]$. Dieser geometrische Effekt wird kompensiert durch eine deutliche Entschirmung des Phosphanphosphors in diesem Isomer ($\Delta \delta = 46-60$), der in den Verbindungen 4e - g zu einer für Dreiringe ungewöhnlichen Tieffeldlage des λ^3 P-Resonanzsignals Anlaß gibt $(\delta = 49-62)^{[12,13]}$. Bemerkenswert ist die signifikante Abnahme des Betrages der PP-Kopplungskonstanten beim Übergang von den Alkylimin- 4a-d Arylimin-substituierten Derivaten 4e-g (bzw. 4'e-g) um 70-80 Hz, die möglicherweise eine Folge der π-Akzeptorwirkung des Imin-Substituenten ist. Jedenfalls legen die ebenfalls kleinen ${}^{1}J_{PP}$ -Werte für Silylimin-substituierte Azadiphosphiridin-imine (140-150 Hz^[2b]) eine derartige Interpretation nahe.

Im ¹³C-NMR-Spektrum beobachtet man für die mit dem Phosphor verknüpften Kohlenstoffatom-Kerne eine Aufspaltung in Doppeldubletts. Die gegenüber 4' deutlich erhöhten Beträge für ${}^{1}J_{>P(=)-C}$ in den Isomeren 4 [61.6 (4'e), 75.0 (4'f), 94.8 (4'g) vs. 122.8 (4e) 133.7 (4f), 162.8 (4g) Hz] sind offenbar auf die besonderen sterischen Verhältnisse in diesem Isomer zurückzuführen. Diese äußern sich u.a. im ¹H- und ¹³C-NMR-Spektrum in einer Dublizierung der entsprechenden Resonanzabsorptionen des bei 4 rotationsgehinderten Arylsubstituenten. Abb. 3 zeigt die Molekülstruktur von 5a. Die Atome der zentralen Einheit N(1)-P(1)-N(2)-P(2) spannen innerhalb der experimentellen Genauigkeit eine Ebene auf. In dieser Ebene liegen ebenfalls die ipso-Kohlenstoffatome C(1) und C(19) der beiden Arylsubstituenten (Mes*), die zueinander die sterisch günstigste exo, exo-Anordnung einnehmen. Dies ergibt eine (E)-Konfiguration für das PN-Doppelbindungssystem, die in der Regel für Aminoiminophosphane beobachtet wird. Die Um-

Abb. 3. Kristallstruktur von **5a**. Ausgewählte Bindungslängen [pm] und -winkel [°]: P(1)–N(1) 156.3(7), P(1)–N(2) 166.7(6), P(2)–N(2) 179.4(6); N(1)–P(1)–N(2) 106.5(3), N(2)–P(2)–C(37) 106.3(4), N(2)–P(2)–C(39) 99.3(3), C(37)–P(2)–C(39) 97.4(4), P(1)–N(1)–C(1) 122.6(5), P(1)–N(2)–P(2) 121.6(4), P(1)–N(2)–C(19) 118.6(5), P(2)–N(2)–C(19) 119.1(5)

gebung um den Phosphanphosphor P(2) ist pyramidal (303.0°). Die beiden Lone Pairs an den Atomen P(1) und P(2) nehmen eine *endo/exo*-Anordnung ein und bilden untereinander einen Winkel von 109.3°. Der Valenzwinkel am Iminstickstoff N(1) [122.6(5)°] entspricht einer sp²-Hybridisierung für dieses Atom. In den typischen Wertebereich für Verbindungen mit dem Strukturelement >N-P=N-fällt der PN_{Amin}- [166.7(6) pm] und PN_{Imin}-Abstand [156.3(7) pm]^[1,14]. Hingegen ist der P(2)-N(2)-Abstand [179.4(6)] gegenüber dem Erwartungswert für eine Phosphor-Stickstoff-Einfachbindung signifikant gedehnt, was als eine Polarisierung der Molekülstruktur in Hinblick auf die Ausbildung eines Komplexes zwischen einem 2-Phosphaallyl-Anion und einem Phosphenium-Kation interpretiert werden kann^[15].

Im ³¹P-NMR-Spektrum beobachtet man für die (Phosphanylamino)iminophosphane **5a**, **b** für das Aminophosphan- bzw. Aminoiminophosphan-Fragment typische Resonanzlagen [δ = 78.8, 297.3 (**5a**), 150.5, 297.1 (**5b**)]. Die dem Betrag nach kleinen PP-Kopplungskonstanten [²J_{PP} = 12.8 (**5a**), <1 Hz (**5b**)] erklären sich aus einer *trans*-Orientierung der beiden Lone Pairs an den Phosphoratomen^[16].

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft (SFB 334) und dem Fonds der chemischen Industrie gefördert. M. L. dankt dem Land Nordrhein Westfalen für ein Graduiertenstipendium.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit unter Inertgas (Argon) durchgeführt; verwendete Geräte, Chemikalien und Lösemittel waren entsprechend vorbereitet. -³¹P-NMR: Varian FT 80 A (32.2 MHz) Bruker AMX 300 (121.5 MHz), externer Standard 85proz. H₃PO₄. - ¹³C-NMR: Varian FT 80 A (20 MHz) und Bruker AMX 300 (75.5 MHz), externer Standard Tetramethylsilan. - ¹H-NMR: Varian EM 390 (90 MHz) und Bruker AMX 300 (300 MHz), externer Standard Tetramethylsilan. Die ³¹P- und ¹³C-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Ein positives Vorzeichen bedeutet eine Tieffeldverschiebung relativ zum Standard. - MS: Kratos MS 50 oder VG Instruments VG 12-250 (EI, Direkteinlaß). Die angegebenen Massenzahlen beziehen sich auf das jeweils häufigste Isotop eines Elements. - Schmelzpunkte: Bestimmung in abgeschmolzenen Kapillaren mit einem Gerät der Firma Büchi, Flawil/Schweiz. Werte sind unkorrigiert. - Elementaranalysen: Im Mikromaßstab Heraeus CHNO-Rapid. - Die Alkyldichlorphosphane 1a-d wurden aus RMgCl und PCl₃ bei -60 °C dargestellt^[17], 1e^[18] und die Iminophosphane 3h, i^[3] und 3j^[19] entsprechend der angegebenen Literatur.

Allgemeine Darstellung der Aminochlorphosphane 2a - c: Zu einer Lösung von 50 mmol des entsprechenden Alkyldichlorphosphans 1 [8.65 g (b), 9.35 g (c), 10.05 g (d)] in 40 ml Diethylether wird bei -60 °C eine Lösung von 7.3 g (0.1 mmol) tert-Butylamin in 15 ml Diethylether getropft. Nach Aufwärmen auf Raumtemp. läßt man noch 4 h rühren. Das tert-Butylamin-hydrochlorid wird abfiltriert, der Ether i. Vak. entfernt und der farblose Rückstand im Feinvakuum destilliert.

(*tert-Butylamino*) chlor(1,1-dimethylpropyl) phosphan (**2a**): Ausb. 9.4 g (90%), Sdp. 43 °C/0.01 Torr. $-{}^{31}P{}^{1}H{}$ -NMR (C₆D₆): $\delta = 139.2$ (s). $-{}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 8.3$ (d, ${}^{3}J_{CP} = 13.5$ Hz, PCCC), 21.5 (d, ${}^{2}J_{CP} = 12.1$ Hz, PCCH₃), 30.7 (d, ${}^{2}J_{CP} = 12.1$ Hz, PCCH₂), 31.9 (d, ${}^{3}J_{CP} = 9.7$ Hz, NCC), 37.8 (d, ${}^{1}J_{CP} = 24.4$ Hz, PC), 52.2 (d, ${}^{2}J_{CP} = 10.3$ Hz, NC). – MS (200°C/50 eV), m/z (%): 209 (2) [M⁺], 194 (7) [M⁺ – CH₃], 138 (35) [M⁺ – EtMe₂Cl], 57 (100) ['Bu⁺] und weitere Fragmente. – C₉H₂₁ClNP (209.7): ber. C 51.55, H 10.09, N 6.68; gef. C 51.63, H 10.15, N 6.59.

(tert-Butylamino) chlor (1-ethyl-1-methylpropyl) phosphan (2b): Ausb. 10.1 g (90%), Sdp. 49°C/0.01 Torr. – ³¹P{¹H}-NMR (CDCl₃): $\delta = 142.9$ (s). – ¹³C{¹H}-NMR (CDCl₃): $\delta = 8.0$ (d, ³J_{CP} = 7.8 Hz) und 8.2 (d, ³J_{CP} = 7.9 Hz) PCCC, 18.7 (d, ²J_{PC} = 9.7 Hz, PCCH₃), 26.6 (d, ²J_{CP} = 18.7 Hz) und 27.3 (d, ²J_{CP} = 17.9 Hz) PCCH₂, 31.9 (d, ³J_{CP} = 9.5 Hz, NCC), 40.8 (d, ¹J_{CP} = 26.3 Hz, PC), 52.5 (d, ²J_{CP} = 10.6 Hz, NC). – ¹H-NMR (CDCl₃): $\delta = 0.90$ (t, ³J_{HH} = 7.5 Hz, 3H) und 0.91 (t, ³J_{HH} = 7.5 Hz, 3H) CH₂CH₃, 1.03 (d, ³J_{HP} = 10.1 Hz, 3H, PCCH₃), 1.26 (d, ⁴J_{HP} = 1.1 Hz, 9H, NCCH₃), 1.39 (m, 2H) und 1.68 (m, 2H) (CH₂CH₃), 2.96 (d, ²J_{HP} = 12.5 Hz, 1H, NH). – MS (200°C/50 eV), m/z (%): 223 (2) [M⁺], 208 (7) [M⁺ – CH₃], 138 (29) [M⁺ – EtMe₂C], 57 (100) [tBu⁺] und weitere Fragmente. – C₁₀H₂₃ClNP (223.7): ber. C 53.69, H 10.36, N 6.26; gef. C 53.81, H 10.44, N 6.31.

(tert-Butylamino)chlor(1,1-diethylpropyl)phosphan (2c): Ausb. 10.9 g (92%), Sdp. 55°C/0.01 Torr. $-{}^{31}P{}^{1}H{}$ -NMR (CDCl₃): $\delta =$ 139.2 (s). $-{}^{13}C{}^{1}H{}$ -NMR (CDCl₃): $\delta =$ 8.8 (d, ${}^{3}J_{CP} =$ 10.8 Hz, PCCC), 26.2 (d, ${}^{2}J_{CP} =$ 15.6 Hz, PCC), 31.8 (d, ${}^{3}J_{CP} =$ 9.8 Hz, NCC), 43.3 (d, ${}^{1}J_{CP} =$ 29.6 Hz, PC), 52.6 (d, ${}^{2}J_{CP} =$ 10.8 Hz, NC). $-{}^{1}$ H-NMR (CDCl₃): $\delta =$ 0.90 (t, ${}^{3}J_{HH} =$ 7.9 Hz, 9H, CH₂CH₃), 1.25 (s, 9H, CCH₃), 1.65 (m, 6H, CH₂CH₃), 3.05 (d, ${}^{2}J_{HP} =$ 12.0 Hz, 1H, NH). - MS (250°C/50 eV), m/z (%): 237 (3) [M⁺], 222 (10) [M⁺ - CH₃], 138 (43) [M⁺ - Et₃C], 57 (100) [*t*Bu⁺] und weitere Framente. $-C_{11}H_{25}$ CINP (237.7): ber. C 55.57, H 10.60, N 5.89; gef. C 55.50, H 10.72, N 5.69.

Allgemeine Darstellung der Aminochlorphosphane 2d-g: Zu 20 mmol Alkyldichlorphosphan 1 [3.16 g (a), 4.01 g (d), 4.10 g (e)] in 50 ml Diethylether wird bei -78 °C eine Suspension von 2.42 g (20 mmol) Lithium-(1,1-diethylpropyl)amid (2d, e) bzw. 5.34 g (20 mmol) Lithium-(2,4,6-tri-*tert*-butylphenyl)amid (2f, g) in 40 ml Diethylether getropft. Es wird 30 min bei -78 °C gerührt, dann läßt man auf Raumtemp. erwärmen. Das Lösemittel wird i. Vak. entfernt, der Rückstand in ca. 20 ml *n*-Hexan aufgenommen und das LiCl über eine Umkehrfritte abgetrennt. Destillation (2d, e) bzw. Umkristallisation bei -30 °C (2f) liefert die reinen Produkte. 2g zersetzt sich zum Teil beim Entfernen des Lösemittels und wurde daher sofort zu 3g weiter umgesetzt.

tert-Butylchlor[(1,1-diethylpropyl)amino]phosphan (2d): Ausb. 3.6 g (30%), Sdp. 59°C/0.01 Torr. $-{}^{31}P\{{}^{1}H\}$ -NMR (C₆D₆): $\delta =$ 136.5 (s). $-{}^{13}C\{{}^{1}H\}$ -NMR (C₆D₆): $\delta =$ 7.8 (d, ${}^{4}J_{CP} =$ 2.8 Hz, NCCC), 25.3 (d, ${}^{2}J_{CP} =$ 17.6 Hz, PCC), 30.2 (d, ${}^{3}J_{CP} =$ 7.8 Hz, NCC), 35.3 (d, ${}^{1}J_{CP} =$ 23.5 Hz, PC), 52.6 (d, ${}^{2}J_{CP} =$ 5.8 Hz, NC). -MS (250°C/50 eV), m/z (%): 237 (1) [M⁺], 208 (9) [M⁺ - Et], 180 (27) [M⁺ - ${}^{1}Bu^{+}$], 57 (100) [${}^{1}Bu^{+}$] und weitere Fragmente. -C₁₁H₂₅ClNP (237.7): ber. C 55.57, H 10.60, N 5.89; gef. C 56.02, H 10.93, N 5.81.

Chlor (1,1-diethylpropyl) [(1,1-diethylpropyl)amino]phosphan (2e): Ausb. 8.6 g (64%), Sdp. 98 °C/0.02 Torr. $-{}^{31}P{}^{1}H{}$ -NMR (C₆D₆): $\delta = 142.1$ (s). $-{}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 7.8$ (d, ${}^{4}J_{CP} =$ 2.2 Hz, NCCC), 9.0 (d, ${}^{3}J_{CP} = 10.9$ Hz, PCCC), 26.3 (d, ${}^{2}J_{CP} = 15.4$ Hz, PCC), 30.2 (d, ${}^{3}J_{CP} = 9.8$ Hz, NCC), 44.0 (d, ${}^{1}J_{CP} = 30.8$ Hz, PC), 59.9 (d, ${}^{2}J_{CP} = 6.6$ Hz, NC). - MS (250 °C/50 eV), m/z (%): 279 (4) [M⁺], 250 (26) [M⁺ - Et], 99 (100) [Et₃C⁺] und weitere Fragmente. $- C_{14}H_{31}$ CINP (279.8): ber. C 60.09, H 11.17, N 5.01; gef. C 60.40, H 11.32, N 4.95.

Chlor(1,1-diethylpropyl)[(2,4,6-tri-tert-butylphenyl)amino]phosphan (2f): Ausb. 4.31 g (51%), Schmp. $125-127 \,^{\circ}\text{C}. - {}^{31}\text{P}{}^{1}\text{H}{}^{-1}$

NMR (C₆D₆): $\delta = 152.2$ (s). $-{}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 8.7$ (d, ${}^{3}J_{CP} = 9.7$ Hz, PCCC), 25.9 (d, ${}^{2}J_{CP} = 14.2$ Hz, PCC), 31.4 (d, ${}^{7}J_{CP} = 0.8$ Hz, *p*-CC₃), 33.4 (d, ${}^{5}J_{CP} = 1.4$ Hz, *o*-CC₃), 34.4 (d, ${}^{6}J_{CP} = 0.9$ Hz, *p*-CC₃), 36.4 (d, ${}^{4}J_{CP} = 1.4$ Hz, *o*-CC₃), 45.4 (d, ${}^{1}J_{CP} = 40.1$ Hz, PC), 123.8 (d, ${}^{4}J_{CP} = 3.1$ Hz, *m*-C), 137.2 (d, ${}^{2}J_{CP} = 6.4$ Hz, *i*-C), 142.1 (d, ${}^{3}J_{CP} = 5.3$ Hz, *o*-C), 143.8 (d, ${}^{5}J_{CP} = 3.0$ Hz, *p*-C). - MS (180°C/40 eV), *m/z* (%): 425 (10) [M⁺], 326 (15) [M⁺ - Et₃C], 270 (43) [M⁺ - Et₃C - C₄H₈], 57 (100) ['Bu⁺] und weitere Fragmente. - C₂₅H₄₅ClNP (426.1): ber. 425.2978; gef. 425.2981 (MS).

Chlor[(2,4,6-tri-tert-butylphenyl)amino]styrylphosphan (2g): Roh-Ausb. 5.35 g (83%) gelbes Öl. $-{}^{31}P{}^{1}H$ -NMR (C₆D₆): $\delta =$ 121.0 (s). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta =$ 29.1–32.7 (m, *p*- und *o*-CC₃), 33.5 (s, *p*-CC₃), 35.8 (s, *o*-CC₃) 121.3 (s, *m*-C-Mes*), 124.2–135.3 (m, CPh), 135.8 (s, *o*-C-Mes*), 136.1 (s, *p*-C-Mes*), 140.0 (s, PC=C), 144.5 (d, {}^{1}J_{CP} = 57.0 Hz, PC=C), 145.5 (d, {}^{2}J_{CP} = 7.0 Hz, *i*-C-Mes*).

Allgemeine Darstellung der Iminophosphane $3\mathbf{a} - \mathbf{e}$ und der Azadiphosphiridine $4\mathbf{a} - \mathbf{d}$: Zur Suspension von 3.3 g (20 mmol) Lithium-bis(trimethylsilyl)amid in 20 ml Diethylether wird bei -60° C eine Lösung von 20 mmol 2 [4.19 g (a), 4.47 g (b), 4.75 g (c, d), 5.60 g (e)] in 30 ml Diethylether getropft. Man läßt auf Raumtemp. erwärmen und rührt 2 h. Der Niederschlag wird abfiltriert und das gelborangefarbene Filtrat nach Entfernen der flüchtigen Bestandteile im Feinvak. in eine gekühlte Vorlage destilliert. In Lösung dimerisieren die Iminophosphane 3 bei 25°C innerhalb weniger Stunden (3a, b) bzw. Tage (3d) zu den Azadiphosphiridinen 4a, b, d. Das Verhältnis von 3 und 4 beträgt in einer 70-%-Lösung von 3 nach Einstellung des Gleichgewichtes etwa 5:95 (a), 25:75 (b) bzw. 50: 50 (d). 3c ist unter diesen Bedingungen mehrere Tage stabil. Mehrtägiges Erwärmen auf 40°C führt auch hier zur Bildung von 4c (ca. 30%).

(tert-Butylimino) (1,1-dimethylpropyl) phosphan (**3a**): Ausb. 2.6 g (75%), Sdp. 23 °C/0.01 Torr. $-{}^{31}P{}^{1}H{}$ -NMR (C₆D₆): $\delta = 477.5$ (s). $-{}^{13}C{}^{1}H{}$ -NMR (C₆D₆): $\delta = 9.5$ (d, ${}^{3}J_{CP} = 5.1$ Hz, PCCC), 23.3 (d, ${}^{2}J_{CP} = 11.0$ Hz, PCCH₃), 32.0 (d, ${}^{2}J_{CP} = 13.1$ Hz, PCCH₂), 33.5 (d, ${}^{3}J_{CP} = 13.2$ Hz, NCC), 45.1 (d, ${}^{1}J_{CP} = 41.3$ Hz, PC), 62.8 (d, ${}^{2}J_{CP} = 4.9$ Hz, NC). - MS (200 °C/50 eV), m/z (%): 173 (2) [M⁺], 158 (7) [M⁺ - CH₃], 102 (35) [M⁺ - EtMe₂C], 57 (100) [¹Bu⁺] und weitere Fragmente. - C₉H₂₀NP (173.2): ber. C 62.40, H 11.64, N 8.09; gef. C 62.47, H 11.80, N 8.20.

(tert-Butylimino) (1-ethyl-1-methylpropyl) phosphan (**3b**): Ausb. 3.0 g (80%), Sdp. 25°C/0.01 Torr. $-{}^{31}P\{{}^{1}H\}$ -NMR (C₆D₆): $\delta =$ 482.4 (s). $-{}^{13}C\{{}^{1}H\}$ -NMR (C₆D₆): $\delta =$ 9.0 (d, ${}^{3}J_{CP} =$ 6.7 Hz, PCCC), 20.0 (d, ${}^{2}J_{CP} =$ 10.2 Hz, PCCH₃), 29.1 (d, ${}^{2}J_{CP} =$ 11.8 Hz, PCCH₂), 33.5 (d, ${}^{3}J_{CP} =$ 13.3 Hz, NCC), 48.7 (d, ${}^{1}J_{CP} =$ 41.9 Hz, PC), 62.9 (d, ${}^{2}J_{CP} =$ 5.0 Hz, NC). - MS (200°C/50 eV), m/z (%): 187 (9) [M⁺], 172 (12) [M⁺ - CH₃], 102 (45) [M⁺ - Et₂MeC], 57 (100) [${}^{1}Bu^{+}$] und weitere Fragmente. - C₁₀H₂₂NP (187.3): ber. C 64.14, H 11.84, N 7.48; gef. C 64.20, H 11.82, N 7.57.

(tert-Butylimino) (1,1-diethylpropyl) phosphan (3c): Ausb. 3.7 g (92%), Sdp. 27 °C/0.01 Torr. $-{}^{31}P{H}-NMR (C_6D_6): \delta = 488.1$ (s). $-{}^{13}C{}^{1}H{-}NMR (C_6D_6): \delta = 8.5 (d, {}^{3}J_{CP} = 6.2 Hz, PCCC),$ 25.5 (d, ${}^{2}J_{CP} = 10.9 Hz, PCC)$, 33.5 (d, ${}^{3}J_{CP} = 13.0 Hz, NCC)$, 52.2 (d, ${}^{1}J_{CP} = 42.7 Hz, PC)$, 63.1 (d, ${}^{2}J_{CP} = 5.0 Hz, NC). - {}^{1}H-NMR (C_6D_6): \delta = 0.9 (d, {}^{3}J_{HH} = 7.9 Hz, 9H, CH_2CH_3), 1.53 (s, 9H, CCH_3), 1.81 (m, 6H, CH_2CH_3). - MS (200 °C/50 eV), m/z (%): 201 (6) [M^+], 186 (12) [M^+ - CH_3], 102 (56) [M^+ - Et_3C], 57 (100) [{}^{1}Bu^+] und weitere Fragmente. - C_{11}H_{24}NP (201.3): ber. C 65.64, H 12.02, N 6.96; gef. C 65.60, H 12.22, N 6.89.$

tert-Butyl[(1,1-diethylpropyl)imino]phosphan (3d): Ausb. 1.5 g (37%), Sdp. 28 °C/0.01 Torr. $-{}^{31}P{}^{1}H{}-NMR$ (C₆D₆): $\delta = 477.3$

(s). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta = 8.2$ (d, ${}^{4}J_{CP} = 2.2$ Hz, NCCC), 26.0 (d, ${}^{2}J_{CP} = 12.3$ Hz, PCC), 31.8 (d, ${}^{3}J_{CP} = 12.5$ Hz, NCC), 42.1 (d, ${}^{1}J_{CP} = 41.6$ Hz, PC), 69.6 (s, NC). - MS (250 °C/50 eV), m/z(%): 201 (6) [M⁺], 172 (9) [M⁺ - Et], 144 (29) [M⁺ - 'Bu], 57 (100) ['Bu⁺] und weitere Fragmente. $-C_{11}H_{24}NP$ (201.3): ber. C 65.64, H 12.02, N 6.96; gef. C 66.07, H 12.41, N 7.05.

(1,1-Diethylpropyl) f(1,1-diethylpropyl)imino Jphosphan (3e): Ausb. 1.9 g (39%), Sdp. 43 °C/0.01 Torr. $-^{31}P\{^{1}H\}$ -NMR (C₆D₆): $\delta = 495.8$ (s). $-^{13}C\{^{1}H\}$ -NMR (C₆D₆): $\delta = 8.4$ (d, $^{3}J_{CP} = 9.5$ Hz, PCCC), 8.4 (s, NCCC), 25.2 (d, $^{2}J_{CP} = 10.9$ Hz, PCC), 31.8 (d, $^{3}J_{CP} = 12.5$ Hz, NCC), 53.4 (d, $^{1}J_{CP} = 40.9$ Hz, PC), 70.5 (s, NC). -MS (250 eV), m/z (%): 243 (4) [M⁺], 214 (23) [M⁺ - Et], 144 (36) [M⁺ - Et₃C], 99 (100) [Et₃C⁺] und weitere Fragmente. -C₁₄H₃₀NP (243.4): ber. C 69.09, H 12.42, N 5.76; gef. C 70.01, H 14.04, N 6.06.

1-tert-Butyl-3-(tert-butylimino)-2,3-bis(1,1-dimethylpropyl)-1,2,3 λ^{5} -azadiphosphiridin (4a): ³¹P{¹H}-NMR (C₆D₆): $\delta = -43.0$ (d, ¹J_{PP} = 226.8 Hz, P^V), 17.4 (d, ¹J_{PP} = 226.8 Hz, P^{III}). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 9.4$ (d, $J_{CP} = 10.9$ Hz) und 9.9 (d, $J_{CP} = 10.8$ Hz) PCCC, 25.9 (dd, $J_{CP} = 9.8$ und 4.4 Hz) und 27.6 (dd, $J_{PC} =$ 4.1 und 1.5 Hz) PCCH₃, 34.7 (d, $J_{CP} = 1.8$ Hz) und 35.7 (dd, $J_{CP} =$ 25.8 und 4.5 Hz) PCCH₂, 31.7 (dd, $J_{CP} = 4.4$ und 3.7 Hz) und 34.8 (dd, $J_{CP} = 12.5$ und 6.0 Hz) NCC, 37.6 (dd, ¹ $J_{CP} = 76.8$, ² $J_{CP} =$ 5.0 Hz, P^{III}C), 46.9 (dd, ¹ $J_{CP} = 115.8$, ² $J_{CP} = 6.3$ Hz, P^VC), 51.8 (dd, $J_{CP} = 12.2$ und 1.4 Hz) und 54.5 (dd, $J_{CP} = 11.0$ und 8.0 Hz) NC.

1-tert-Butyl-3-(tert-butylimino)-2,3-bis(1-ethyl-1-methylpropyl)-1,2,3λ⁵-azadiphosphiridin (**4b**): ³¹P{¹H}-NMR (C₆D₆): δ = -43.7 (d, ¹J_{PP} = 228.4 Hz, P^V), 19.6 (d, ¹J_{PP} = 228.4 Hz, P^{III}). - ¹³C{¹H}-NMR (C₆D₆): δ = 9.3 - 10.0 (m) PCCC, 22.9 (dd, J_{CP} = 7.0 und 2.6 Hz) und 24.3 (s, br) PCCH₃, 31.3-32.0 (m, PCCH₂), 31.8 (t, J_{CP} = 4.1 Hz) und 34.8 (dd, J_{CP} = 12.5 Hz und 6.3 Hz) NCC, 41.9 (dd, ¹J_{CP} = 79.8, ²J_{CP} = 5.0 Hz, P^{III}C), 46.9 (dd, ¹J_{CP} = 112.6, ²J_{CP} = 6.1 Hz, P^VC), 52.1 (dd, J_{CP} = 12.9 und 1.4 Hz) und 54.9 (dd, J_{CP} = 11.0 und 8.0 Hz) NC.

1-tert-Butyl-3-(tert-butylimino)-2,3-bis(1,1-diethylpropyl)-1,2,3 λ^5 -azadiphosphiridin (4c): ³¹P{¹H}-NMR (C₆D₆): $\delta = -49.0$ (d, ¹J_{PP} = 228.3 Hz, P^V), 22.8 (d, ¹J_{PP} = 228.3 Hz, P^{III}). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 9.5$ (d, J_{CP} = 7.8 Hz) und 9.9 (d, J_{CP} = 8.7 Hz) PCCC, 29.1 (br, s) und 29.1 (dd, J_{CP} = 15.7 und 3.5 Hz), PCC, 31.7 (t, J_{CP} = 4.0) und 34.6 (dd, J_{CP} = 12.5 und 6.3 Hz) NCC, 45.7 (dd, ¹J_{CP} = 83.3, ²J_{CP} = 5.0 Hz, P^{III}C), 50.8 (dd, ¹J_{CP} = 119.5, ²J_{CP} = 6.1 Hz, P^VC), 52.3 (dd, J_{CP} = 14.1 und 1.4 Hz) und 55.3 (dd, J_{CP} = 11.3 und 8.0 Hz) NC.

2,3-Di-tert-butyl-1-(1,1-diethylpropyl)-3-[(1,1-diethylpropyl)imino]-1,2,3 λ^{5} -azadiphosphiridin (4d): ³¹P{¹H}-NMR (C₆D₆): $\delta =$ -48.0 (d, $J_{PP} = 223$ Hz, P^V), 16.1 (d, $J_{PP} = 223$ Hz, P^{III}). -¹³C{¹H}-NMR (C₆D₆): $\delta = 9.2$ (s) und 9.7 (s) NCCC, 29.2 (t, $J_{CP} =$ 3.8 Hz) und 33.8 (dd, $J_{CP} = 12.0$ und 6.0 Hz) NCC, 29.7 (dd, $J_{CP} =$ 16.2 und 4.1 Hz) und 30.7 (d, $J_{CP} = 2.0$ Hz) PCC, 35.0 (dd, ¹ $J_{CP} =$ 72.0, ² $J_{CP} = 4.0$ Hz, P^{III}C), 38.1 (dd, ¹ $J_{CP} = 117.0$, ² $J_{CP} = 7.0$ Hz, P^VC), 57.0 (d, $J_{CP} = 14.0$ Hz) und 59.2 (dd, $J_{CP} = 10.0$ und 7.0 Hz) NC.

(1,1-Diethylpropyl) [(2,4,6-tri-tert-butylphenyl) imino] phosphan (3f): 0.85 g (5 mmol) Lithium-tert-butyl(trimethylsilyl) amid werden in 10 ml Diethylether vorgelegt. Bei 0 °C tropft man eine Lösung von 2.1 g (5 mmol) 2f in 10 ml Diethylether zu. Es wird auf Raumtemp. erwärmt und 24 h bis zum vollständigen Umsatz gerührt. Das Lösemittel wird i. Vak. entfernt und der Rückstand in *n*-Hexan aufgenommen. Das LiCl wird abfiltriert und das Filtrat eingeengt. Bei -30 °C krisallisiert das Produkt in tiefvioletten Kristallen aus. Ausb. 1.1 g (57%), Schmp. 79-80 °C. $-3^{11}P{H}-NMR$ (C₆D₆): δ = 520.0 (s). $-{}^{13}C{}^{1}H{}-NMR$ (C₆D₆): δ = 9.0 (d, ${}^{3}J_{CP} = 5.1$ Hz, PCCC), 25.6 (d, ${}^{2}J_{CP} = 10.2$ Hz, PCC), 31.4 (s, *p*-CC₃), 32.7 (s, *o*-CC₃), 33.6 (s, *p*-CC₃), 36.9 (s, *o*-CC₃), 56.3 (d, ${}^{1}J_{CP} = 52.5$ Hz, PC), 119.6 (s, *m*-C), 133.7 (d, ${}^{3}J_{CP} = 12.4$ Hz, *o*-C), 143.1 (d, ${}^{5}J_{CP} = 1.5$ Hz, *p*-C), 150.9 (d, ${}^{2}J_{CP} = 8.2$ Hz, *i*-C). – MS (180°C/50 eV), *m/z* (%): 389 (3) [M⁺], 290 (100) [M⁺ – Et₃C], 234 (20) [M⁺ – Et₃C – C₄H₈], 57 (62) ['Bu⁺] und weitere Fragmente. – C₂₅H₄₄NP (389.6): ber. 389.3211; gef. 389.3219 (MS).

Styryl[(2,4,6-tri-tert-butylphenyl) imino]phosphan (3g): Eine Lösung von 1.5 g (3.8 mmol) 2g in 20 ml Petrolether wird bei 0°C mit 0.63 g (3.9 mmol) Lithium-bis(trimethylsilyl)amid versetzt. Es wird 1 h gerührt, dann erwärmt man auf Raumtemp., filtriert das ausgefallene LiCl ab und engt die Lösung i. Vak. ein. Bei 0°C fällt 3g als blauer Feststoff aus, Ausb. 1.17 g (78%), Schmp. 83°C. – ³¹P{¹H}-NMR (C₆D₆): δ = 389.5 (s). – ¹³C{¹H}-NMR (C₆D₆): δ = 32.0 (s, *p*-CC₃), 32.6 (s, *o*-CC₃), 34.8 (s, *p*-CC₃), 36.5 (s, *o*-CC₃), 121.8 (s, *m*-C-Mes*), 128.9 – 128.3 (m, *o*,*m*,*p*-C-Ph), 133.7 (s, *o*-C-Mes*), 135.2 (s, *i*-C-Ph), 140.0 (d, ⁵J_{CP} = 5.0 Hz, *p*-C-Mes*), 143.5 (d, ²J_{CP} = 3.0 Hz, *i*-C-Mes*), 143.9 (d, ¹J_{CP} = 65.0 Hz, *PC*=C), 153.7 (d, ²J_{CP} = 35.0 Hz, *PC*=C). – MS (180°C/40 eV), *m/z* (%): 392 (10) [M⁺], 290 (100) [Mes*NP⁺], 246 (65) [Mes*H⁺], 103 (20) [PhCHCH[±]₂], 57 (84) [¹Bu⁺] und weitere Fragmente. – C₂₆H₃₆NP (393.2): ber. C 79.35, H 9.22, N 3.56; gef. C 79.28, H 9.23, N 3.48.

Allgemeine Darstellung der $1,2,3\lambda^{5}$ -Azadiphosphiridine $4\mathbf{e}-\mathbf{g}$ und $4'\mathbf{e}-\mathbf{g}$: Eine Lösung von jeweils 4 mmol des entsprechenden Iminophosphans 3 [1.57 g (g), 1.28 g (h), 1.22 (i)] in 5 ml Diethylether wird mit 0.81 g (4 mmoL) 3c versetzt. Es wird 16 h (3i), 2-3 d (3h) bzw. 7 d (3g) (NMR-Kontrolle) bei Raumtemp. gerührt. Die beiden Diastereomere 4 und 4' entstehen in einem Verhältnis von etwa 40:60 (e), 60:40 (f) und 80:20 (g). Die gelben Lösungen werden stark eingeengt. Bei 4°C kristallisiert aus Ether bevorzugt 4'. Die Mutterlauge reichert sich mit 4 an, welches bei -20°C zur Kristallisation gebracht werden kann. Die Isolation gelingt so durch mehrfache fraktionierte Kristallisation.

1-tert-Butyl-2-(1,1-diethylpropyl)-3-methyl-3-[(2,4,6-tri-tert-butylphenyl)imino]-1,2,3 λ^{5} -azadiphosphiridin (**4e** bzw. **4'e**)

4e: Ausb. 0.65 g (32%) gelbe Kristalle, Schmp. 73-76°C. - ${}^{31}P{}^{1}H{}-NMR (C_6D_6): \delta = -75.5 (d, {}^{1}J_{PP} = 150.0 \text{ Hz}, P^V), 58.5 (d, {}^{1}J_{PP} = 150.0 \text{ Hz}, P^V)$ ${}^{1}J_{PP} = 150.0 \text{ Hz}, P^{III}$). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta = 9.9 \text{ (d, } J_{CP} =$ 8.1 Hz, P^{III}CCC), 20.2 (dd, ${}^{1}J_{CP} = 122.8$, ${}^{2}J_{CP} = 18.9$ Hz, P^VC), 28.5 (dd, $J_{CP} = 13.8$ und 4.2 Hz, P^{III}CC), 30.3 (dd, $J_{CP} = 4.3$ und 3.4 Hz, PNCC₃), 32.2 (s, p-CC₃), 32.3 (d, $J_{CP} = 4.0$ Hz) und 32.4 (d, $J_{CP} = 5.1$ Hz) o-CC₃, 34.8 (s, p-CC₃), 36.7 (d, $J_{CP} = 2.5$ Hz) und 36.8 (d, $J_{CP} = 2.5$ Hz), o-CC₃, 44.6 (dd, ${}^{1}J_{CP} = 57.4$, ${}^{2}J_{CP} = 2.1$ Hz, $P^{III}C$), 55.7 (dd, $J_{CP} = 13.7$ und 9.6 Hz, PNCC₃), 121.5 (d, $J_{CP} =$ 2.0 Hz) und 121.6 (d, $J_{CP} = 3.0$ Hz) m-C, 140.3 (d, $J_{CP} = 7.6$ Hz, p-C), 142.8 (d, $J_{CP} = 9.5$ Hz, *i*-C), 143.7 (d, $J_{CP} = 10.9$ Hz) und 144.5 (d, $J_{CP} = 11.3$ Hz, o-C). $- {}^{1}$ H-NMR (C₆D₆): $\delta = 0.82$ (t, ${}^{3}J_{\rm HH} = 7.4$ Hz, 9H, (CH₂CH₃)₃), 1.20 (m, 6H, (CH₂CH₃)₃), 1.34 [s, 9H, NC(CH₃)₃], 1.50 [s, 9H, p-C(CH₃)₃], 1.72 (s, 9H) und 1.85 [s, 9H, o-C(CH₃)₃], 1.97 (dd, $J_{HP} = 13.0$ und 4.5 Hz, 3H, PCH₃), 7.45 (m, 2H, Mes*-H). - MS (180°C/70 eV), m/z (%): 506 (34) [M⁺], 351 (72) $[M^+ - C_7 H_{14} - {}^tBu]$, 305 (100) $[Mes^*NPMe^+]$, 295 (45) $[M^+ - C_7H_{14} - {}^{t}Bu-C_4H_8]$, 290 (95) $[Mes^*NP^+]$, 246 (24) $[Mes^{+}H^{+}]$, 57 (52) $[^{t}Bu^{+}]$, 41 (20) $[C_{3}H_{5}^{+}]$ und weitere Fragmente. $-C_{30}H_{56}N_2P_2$ (506.7): ber. 506.3918; gef. 506.3920 (MS).

4'e: Ausb. 0.82 g (40%) farblose Kristalle, Schmp. 95–97 °C. – ³¹P{¹H}-NMR (C₆D₆): $\delta = -41.8$ (d, ¹J_{PP} = 152.2 Hz, P^V), -2.4 (d, ¹J_{PP} = 152.2 Hz, P^{III}). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 9.5$ (d, J_{CP} = 8.5 Hz, P^{III}CCC), 16.2 (dd, ¹J_{CP} = 61.6, ²J_{CP} = 11.4 Hz, P^VC), 28.2 (dd, J_{CP} = 14.5 und 4.7 Hz, P^{III}CC), 31.3 (dd, J_{CP} = 7.0 und 2.8 Hz, PNCC₃), 32.3 (d, $J_{CP} = 5.3$ Hz, o-CC₃), 32.3 (d, $J_{CP} = 1.1$ Hz, p-CC₃), 34.8 (d, $J_{CP} = 1.2$ Hz, p-CC₃), 36.9 (d, $J_{CP} = 1.6$ Hz, o-CC₃), 43.1 (dd, ${}^{1}J_{CP} = 71.7$, ${}^{2}J_{CP} = 8.0$ Hz, $P^{V}C$), 55.2 (dd, ${}^{1}J_{CP} = 12.7$ und 7.9 Hz, PCCC₃), 122.0 (d, $J_{CP} = 3.4$ Hz, m-C), 140.3 (d, $J_{CP} = 4.2$ Hz, p-C), 142.1 (dd, $J_{CP} = 9.1$, $J_{CP} = 3.4$ Hz, m-C), 142.6 (t, $J_{CP} = 2.3$ Hz, i-C). - ¹H-NMR (C₆D₆): $\delta = 0.98$ [t, ${}^{3}J_{HH} = 7.4$ Hz, 9H, (CH₂CH₃)₃], 1.45 [m, 6H, (CH₂CH₃)₃], 1.50 [s, 9H, NC(CH₃)₃], 1.51 [s, 9H, p-C(CH₃)₃], 1.80 [s, 18H, o-C(CH₃)₃], 1.90 (dd, $J_{HP} = 14.0$ und 5.0 Hz, 3H, PCH₃), 7.59 (d, $J_{HP} = 1.9$ Hz, 2H, Mes*-H). - MS (180°C/70 eV), m/z (%): 506 (34) [M⁺], 351 (58) [M⁺ - C₇H₁₄ - ¹Bu], 305 (100) [Mes*NPMe⁺], 295 (18) [M⁺ - C₇H₁₄ - ¹Bu - C₄H₈], 290 (98) [Mes*NP⁺], 259 (38) [Mes*N⁺], 234 (18) [C₁₄H₂₁NP⁺], 102 (27) [PN'Bu⁺], 57 (77) [¹Bu⁺] und weitere Fragmente. - C₃₀H₅₆N₂P₂ (506.7): ber. 506.3918; gef. 506.3925 (MS).

1-tert-Butyl-2-(1,1-diethylpropyl)-3-ethyl-3-[(2,4,6-tri-tert-butyl-phenyl)imino]-1,2,3 λ^{5} -azadiphosphiridin (4f bzw. 4'f)

4f: Ausb. 0.75 g (36%) gelbe Kristalle, Schmp. 104-105°C. - ${}^{31}P{}^{1}H{}-NMR (C_6D_6): \delta = -65.0 (d, {}^{1}J_{PP} = 151.0 Hz, P^{V}), 48.9 (d,)$ ${}^{4}J_{PP} = 151.0 \text{ Hz}, P^{III}$). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta = 9.1$ (t, $J_{CP} =$ 7.3 Hz, P^VCC), 9.9 (d, $J_{CP} = 8.7$ Hz, P^{III}CCC), 27.4 (dd, ${}^{1}J_{CP} =$ 133.7, ${}^{2}J_{CP} = 15.2$ Hz, P^VC), 28.7 (dd, $J_{CP} = 13.9$ und 4.1 Hz, $P^{III}CC$), 30.4 (dd, $J_{CP} = 4.0$ und 3.7 Hz, PNCC₃), 32.2 (d, $J_{CP} =$ 1.9 Hz, p-CC₃), 32.6 (d, $J_{CP} = 7.3$ Hz) und 32.7 (d, $J_{CP} = 6.3$ Hz) o-CC₃, 34.8 (d, $J_{CP} = 2.0$ Hz, p-CC₃), 36.8 (s) und 36.9 (s) o-CC₃, 44.4 (dd, ${}^{1}J_{CP} = 56.9$, ${}^{2}J_{CP} = 2.3$ Hz, P^{III}C), 55.3 (dd, $J_{CP} = 14.1$ und 9.7 Hz, PNCC₃), 121.6 (d, $J_{CP} = 3.0$ Hz) und 121.7 (d, $J_{CP} =$ 1.9 Hz) m-C, 140.2 (d, $J_{CP} = 6.6$ Hz, p-C), 143.1 (d, $J_{CP} = 9.1$ Hz, *i*-C), 143.9 (dd, $J_{CP} = 11.4$ und 1.4 Hz) und 144.3 (dd, $J_{CP} = 11.1$ und 1.3 Hz) o-C. - ¹H-NMR (C₆D₆): $\delta = 0.86$ [t, ³J_{HH} = 7.5 Hz, 9H, $(CH_2CH_3)_3$], 1.35 [s, 9H, NC $(CH_3)_3$], 1.35-1.50 [m, 9H, (CH₂CH₃)₃ und PCH₂CH₃], 1.51 [s, 9H, p-C(CH₃)₃], 1.75 (s, 9H) und 1.86 (s, 9 H), o-C(CH₃)₃, 1.91 (dq, $J_{\rm HH} = 22.8$, ${}^{3}J_{\rm HH} = 7.7$ Hz, 1 H) und 2.70 (dq, $J_{HP} = 22.8$, ${}^{3}J_{HH} = 7.7$ Hz, 1 H) PCH₂CH₃, 7.49 (m, 2H, Mes*-H). – MS (180°C/70 eV), m/z (%): 520 (5) [M⁺], 365 (25) $[M^+ - C_7H_{14} - {}^tBu]$, 319 (76) $[Mes^*NPEt^+]$, 309 (19) $[M^+ - C_7 H_{14} - {}^tBu - C_4 H_8]$, 290 (100) [Mes*NP⁺], 261 (12) [M⁺ - Mes*N], 246 (44) [Mes*H⁺], 57 (73) [¹Bu⁺] und weitere Fragmente. $-C_{31}H_{58}N_2P_2$ (520.8): ber. 520.4075; gef. 520.4076 (MS).

4'f: Ausb. 0.62 g (30%) farblose Kristalle, Schmp. 115-117 °C. $-{}^{31}P{}^{1}H$ -NMR (C₆D₆): $\delta = -42.6$ (d, ${}^{1}J_{PP} = 171.0$ Hz, P^{V}), 2.7 (d, ${}^{1}J_{PP} = 171.0$ Hz, P^{III}). $- {}^{13}C{}^{1}H{}-NMR$ (C₆D₆): $\delta = 8.8$ (dd, $J_{CP} = 4.9$ und 1.6 Hz) P^VCC, 9.3 (d, $J_{CP} = 7.9$ Hz, $P^{III}CCC$), 27.0 (dd, ${}^{1}J_{CP} = 75.0$, ${}^{2}J_{CP} = 12.0$ Hz, $P^{V}C$), 28.0 (dd, $J_{\rm CP} = 14.7$ und 4.4 Hz, P^{III}CC), 30.9 (dd, $J_{\rm CP} = 6.6$ und 3.1 Hz, PNCC₃), 32.2 (d, $J_{CP} = 4.9$ Hz, o-CC₃), 32.4 (d, $J_{CP} = 1.1$ Hz, p-CC₃), 34.5 (d, $J_{CP} = 1.0$ Hz, p-CC₃), 36.7 (d, $J_{CP} = 1.5$ Hz, o-CC₃), 43.5 (dd, ${}^{1}J_{CP} = 72.6$, ${}^{2}J_{CP} = 8.0$ Hz, $P^{III}C$), 54.8 (dd, $J_{CP} = 11.7$ und 7.7 Hz, PNCC₃), 121.7 (d, $J_{CP} = 2.9$ Hz, m-C), 139.7 (d, $J_{CP} =$ 3.6 Hz, p-C), 141.6 (dd, $J_{CP} = 9.0$, $J_{CP} = 3.5$ Hz, o-C), 142.6 (dd, $J_{CP} = 3.9 \text{ und } 2.5 \text{ Hz}, i\text{-C}$. $- {}^{1}\text{H-NMR} (C_6 D_6): \delta = 1.01 [t, {}^{3}J_{HH} =$ 7.4 Hz, 9H, (CH₂CH₃)₃], 1.10 (m, 3H, PCH₂CH₃), 1.43 [s, 9H, NC(CH₃)₃], 1.45 [m, 6H, (CH₂CH₃)₃], 1.50 [s, 9H, p-C(CH₃)₃], 1.82 [s, 18H, o-C(CH₃)₃], 2.60 (m, 2H, PCH₂CH₃), 7.53 (d, $J_{HP} = 1.7$ Hz, 2H, Mes*-H). - MS (180°C/70 eV), m/z (%): 520 (8) [M⁺], $365 (14) [M^+ - C_7 H_{14} - {}^tBu], 351 (29) [M^+ - C_7 H_{14} - NtBu], 319$ (50) [EtPNMes^{*+}], 290 (96) [Mes^{*}NP⁺], 278 (52) [M⁺ – CEt₃ – $2^{t}Bu - Et$], 264 (27) [M⁺ - CEt₃ - N^tBu - ^tBu - Et], 261 (23) $[M^+ - Mes^*N]$, 246 (95) $[Mes^*H^+]$, 106 (11) $[M^+ - Mes^* C_7H_{14} - N^tBu$, 57 (100) [^tBu⁺] und weitere Fragmente. -C31H58N2P2 (520.8): ber. C 71.50, H 11.23, N 5.38; gef. C 70.52, H 11.13, N 5.72.

1-tert-Butyl-2-(1,1-diethylpropyl)-3-styryl-3-[(2,4,6-tri-tert-butylphenyl)imino]-1,2,3 λ^{5} -azadiphosphiridin (**4g** bzw. **4'g**)

4g: Ausb. 0.74 g (31%) gelbe Kristalle, Schmp. 130-133°C. -³¹P{¹H}-NMR (C₆D₆): $\delta = -73.3$ (d, ¹J_{PP} = 143.0 Hz, P^V), 62.3 (d, ${}^{1}J_{PP}$ = 143.0 Hz, P^{III}). - ${}^{13}C{}^{1}H$ -NMR (C₆D₆): δ = 9.9 (d, J_{CP} = 8.3 und 1.6 Hz, $P^{III}CCC$), 28.6 (dd, $J_{CP} = 13.6$ und 4.5 Hz, $P^{III}CC$), 30.2 (dd, $J_{CP} = 4.4$ und 3.2 Hz, PNCC₃), 32.2 (d, $J_{CP} = 1.8$ Hz, p-CC₃), 32.5 (d, $J_{CP} = 4.4$ Hz) und 32.6 (d, $J_{CP} = 5.2$ Hz) o-CC₃, 34.6 (d, $J_{CP} = 2.0$ Hz, p-CC₃), 36.8 (d, $J_{CP} = 2.5$ Hz) und 37.0 (d, $J_{CP} =$ 2.4 Hz) o-CC₃, 45.2 (dd, ${}^{1}J_{CP} = 56.2$, ${}^{2}J_{CP} = 2.3$ Hz, P^{III}C), 55.1 (dd, $J_{CP} = 14.0$ und 9.7 Hz, PNCC₃), 121.6 (d, $J_{CCP} = 5.8$ Hz) und 121.7 (d, $J_{CP} = 5.4$ Hz) *m*-C-Mes*, 123.3 (dd, ${}^{1}J_{CP} = 162.8$, ${}^{2}J_{CP} =$ 18.2 Hz, P^vC=C), 127.5 (s, o-C-Ph), 129.1 (s, m-C-Ph), 129.5 (s, p-C-Ph), 136.4 (d, $J_{\rm CP}$ = 22.6 Hz, *i*-C-Ph), 140.5 (d, $J_{\rm CP}$ = 6.6 Hz, p-C-Mes*), 144.3 (d, $J_{CP} = 9.6$ Hz, *i*-C-Mes*), 143.5 (d, $J_{CP} = 8.0$ Hz) und 145.0 (d, $J_{CP} = 10.5$ Hz) o-C-Mes*, 146.3 (dd, $J_{CP} = 8.4$ und 2.7 Hz, P^VC=C). - ¹H-NMR (C₆D₆): $\delta = 0.90$ [t, ³J_{HH} = 7.4 Hz, 9H, (CH₂CH₃)₃], 1.38 [m, 6H, (CH₂CH₃)₃] 1.41 [s, 9H, NC(CH₃)₃], 1.52 [s, 9H, p-C(CH₃)₃], 1.77 (s, 9H) und (s, 9H) o- $C(CH_3)_3$, 6.47 (dd, $J_{HP} = 29.6$, ${}^{3}J_{HH} = 16.9$ Hz, 1H, PCHCH), 7.0 - 7.6 (m, 7 H, aromatische H), 7.82 (dd, $J_{\rm HP} = 24.5$, ${}^{3}J_{\rm HH} = 16.9$ Hz, 1 H, PCHCH). – MS (180 °C/70 eV), m/z (%): 594 (100) [M⁺], 537 (7) $[M^+ - {}^tBu]$, 495 (57) $[M^+ - CEt_3]$, 439 (38) $[M^+ - C_7H_{14}]$ - 'Bu], 393 (44) [Mes*NPC₈H₇⁺], 290 (12) [Mes*NP⁺], 246 (33) $[Mes^{*}H^{+}]$, 206 (17) $[M^{+} - Mes^{*}NH - N^{t}Bu - {}^{t}Bu]$, 57 (37) $[{}^{t}Bu^{+}]$ und weitere Fragmente. $- C_{37}H_{60}N_2P_2$ (594.8): ber. 594.4232; gef. 594.4228 (MS).

4'g: Ausb. 0.18 g (8%) gelborangefarbene Kristalle, Schmp. $135-137^{\circ}C. - {}^{31}P{}^{1}H{}-NMR (C_6D_6): \delta = -49.4 (d, {}^{1}J_{PP} = 143.6$ Hz, P^{V}), 9.4 (d, ${}^{1}J_{PP} = 143.6$ Hz, P^{III}). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta = 9.3$ (d, $J_{CP} = 7.7$ und 1.6 Hz, P^{III}CCC), 28.0 (dd, $J_{CP} = 14.6$ und 4.8 Hz, $P^{III}CC$), 31.1 (dd, $J_{CP} = 7.2$ und 2.5 Hz, PNCC₃), 32.1 (s, p-CC₃), 32.2 (d, $J_{CP} = 0.6$ Hz, o-CC₃), 34.7 (d, $J_{CP} = 1.0$ Hz, p-CC₃), 36.8 (d, $J_{CP} = 1.4$ Hz, o-CC₃), 43.5 (dd, ${}^{1}J_{CP} = 72.2$, ${}^{2}J_{CP} =$ 8.1 Hz, $P^{III}C$), 55.3 (dd, $J_{CP} = 12.4$ und 7.4 Hz, $PNCC_3$), 120.6 (dd, ${}^{1}J_{CP} = 95.8$, ${}^{2}J_{CP} = 12.0$ Hz, $P^{V}C=C$), 121.8 (dd, $J_{CP} = 4.0$ und 3.0 Hz, m-C-Mes*), 127.2 (s, p-C-Ph), 127.5 (s, o-C-Ph), 129.0 (s, m-C-Ph), 136.2 (d, $J_{CP} = 23.4$ Hz, *i*-C-Ph), 140.0 (d, $J_{CP} = 3.9$ Hz, *p*-C-Mes*), 141.9 (dd, $J_{CP} = 8.1$ und 3.3 Hz, o-C-Mes*), 142.9 (s, i-C-Mes*), 149.1 (d, $J_{CP} = 8.0$ Hz, $P^{v}C=C$). $- {}^{1}H$ -NMR (C₆D₆): $\delta =$ 1.01 (td, ${}^{3}J_{HH} = 7.4$, $J_{HP} = 2.2$ Hz, 9H, (CH₂CH₃)₃], 1.55 [s, 9H, NC(CH₃)₃], 1.63 [s, 9H, p-C(CH₃)₃], 1.74 [m, 6H, (CH₂CH₃)₃], 1.83 [s, 18 H, o-C(CH₃)], 6.61 (dd, $J_{HP} = 19.9$, ${}^{3}J_{HH} = 17.5$ Hz, 1 H, PCHCH), 6.84 (dd, $J_{\rm HP} = 24.7$, ${}^{3}J_{\rm HH} = 17.5$ Hz, 1H, PCHCH), 7.0-7.6 (m, 7 H, aromatische H). - MS (180°C/70 eV), m/z (%): 594 (18) $[M^+]$, 537 (7) $[M^+ - {}^tBu]$, 495 (100) $[M^+ - CEt_3]$, 439 (66) $[M^+ - C_7 H_{14} - {}^{t}Bu]$, 383 (28) $[M^+ - C_7 H_{14} - {}^{t}Bu - C_4 H_8]$, 393 (8) $[Mes*NPC_8H_7^+]$, 304 (12) $[M^+ - Mes*NP]$, 290 (10)

Tab. 4.	Einzelheiten	zur Datensamn	nlung, Struktu	rlösung und	-verfeinerung
			,,		

	3f	4e	4f	5a
Empirische Formel	C ₂₅ H ₄₄ NP	C ₃₀ H ₅₆ N ₂ P ₂	C ₃₁ H ₅₈ N ₂ P ₂	C46H70N2P2
Kristallfarbe	violett	farblos	gelb	gelb
Kristalldimensionen [mm]	0.30 x 0.55 x 0.65	0.10 x 0.15 x 0.35	0.25 x 0.40 x 0.40	0.40 x 0.60 x 0.70
Kristallsystem	monoklin	orthorhombisch	orthorhombisch	tetragonal
Raumgruppe	P2 ₁ /n (Nr. 14)	Pbca (Nr. 61)	Pca2 ₁ (Nr. 29)	I4 ₁ /a (Nr. 88)
a [Å]	10.216(2)	9.701(1)	29.535(4)	37.961(6)
b [Å]	21.007(4)	22.128(2)	11.127(1)	
c [Å]	11.665(2)	28.961(6)	9.899(1)	13.842(4)
β[°]	97.88(2)			
V [nm ³]	2.480(1)	6.217(2)	3.253(1)	19.947(8)
Z	4	8	4	16
Formelgewicht [a.m.u.]	389.6	506.7	520.7	713.0
$\rho_{\text{ber.}} [\text{g cm}^{-3}]$	1.04	1.08	1.06	0.95
Strahlung, λ [Å]	$Cu_{K\alpha}, \lambda = 1.5418$	$Cu_{K\alpha}$, $\lambda = 1.5418$	$Cu_{K\alpha}, \lambda = 1.5418$	$Mo_{K\alpha}$, $\lambda = 0.7107$
$\mu [\text{mm}^{-1}]$	1.01	1.39	1.34	0.12
F (000)	864	2240	1152	6240
Diffraktometer	Enraf-Nonius CAD4	Enraf-Nonius CAD4	Enraf-Nonius CAD4	Nicolet R3m
Scan-Typ	ω	2Θ/ω	ω	ω
Meßbereich	$2\Theta_{\max} = 120^{\circ}$ $0 \le h \le 11$	$2\Theta_{\max} = 120^{\circ}$ $0 \le h \le 10$	$2\Theta_{\text{max.}} = 120^{\circ}$ $0 \le h \le 32$	2⊖ _{max.} = 45° 0≤h≤40
	0≤k≤23	0≤k≤24	-12≤k≤0	0≤k≤40
	-13≤1≤12	0≤l≤32	-11⊴≤11	0⊴l≤14
Temperatur [K]	193	193	293	293
gemessene Reflexe	4022	4618	4766	7102
unabhängige Reflexe	3663	4618	4766	6533
R _{int}	0.025	0.0	0.0	0.092
beobachtete Reflexe				
mit $ F >3\sigma(F)$		3938		3126
mit $ F > 4\sigma(F)$	3047		4197	
Parameter	244	308	316	451
R	0.058	0.044	0.054	0.082
R.,,	0.063	0.049	0.056	0.077
g	0.0006	0.0001	0.0012	0.0010
Restelektronen-				
dichte _{max./min.} [e Å ⁻³]	0.40/-0.33	0.37/-0.37	1.11/-0.45	0.53/-0.23

[Mes*NP⁺], 246 (20) [Mes*H⁺], 206 (30) [M⁺ - Mes*NH - N'Bu - 'Bu], 57 (40) ['Bu⁺] und weitere Fragmente. $-C_{37}H_{60}N_2P_2$ (594.8): ber. 594.4232; gef. 594.4237 (MS).

[(Ethylstyrylphosphanyl)(2,4,6-tri-tert-butylphenyl)amino]-[(2,4,6-tri-tert-butylphenyl)imino]phosphan (5a): Eine Lösung von 0.94 g (2.9 mmol) 3h und 1.15 g (2.9 mmol) 3g in 10 ml Pentan wird 10 d bei Raumtemp. gerührt. Die grüne Reaktionslösung wird filtriert und das Filtrat eingeengt. Bei -20 °C erhält man 0.80 g (38%) gelbe Kristalle, Schmp. $136 - 140 \,^{\circ}\text{C}$. $- \,^{31}\text{P}\{^{1}\text{H}\}$ -NMR (C₆D₆): $\delta =$ 78.8 (d, ${}^{2}J_{PP} = 12.8$ Hz, >P-), 297.3 (d, ${}^{2}J_{PP} = 12.8$ Hz, -P=). -¹³C{¹H}-NMR (C₆D₆): $\delta = 8.6$ (d, $J_{CP} = 29.5$ Hz, PCC), 21.9 (d, $J_{\rm CP} = 23.9$ Hz, PC), 31.4 (s, p-CC_{3Amin}), 32.0 (s, p-CC_{3Imin}), 33.6 (s, o-CC-_{3Imin}), 33.5 (t, $J_{CP} = 3.0$ Hz) und 36.1 (t, $J_{CP} = 5.0$ Hz) o-CC_{3Amin}, 122.4 (s, m-C-Mes_{Imin}), 125.3 (s) und 126.2 (s) m-C- Mes^*_{Amin} , 127.3 (s, o-C-Ph), 128.8 (d, ${}^{1}J_{CP} = 45.6$ Hz, PC=C), 128.8 (s, p-C-Ph), 128.8 (d, $J_{CP} = 3.3$ Hz, m-C-Ph), 137.3 (d, $J_{CP} = 15.5$ Hz, i-C-Ph), 137.5 (d, J_{CP} = 7.4 Hz, o-C-Mes*min), 142.0 (s, p-C- Mes_{Imin}^*), 143.5 (d, $J_{CP} = 17.8$ Hz, *i*-C-Mes_{Imin}^*), 145.6 (d, $J_{CP} = 45.4$ Hz, PC=C), 146.2 (d, $J_{CP} = 4.7$ Hz, *i*-C-Mes^{*}_{Amin}), 148.4 (s, *p*-C-Mes^{*}_{Amin}), 150.2 (d, $J_{CP} = 3.7$ Hz) und 150.4 (d, $J_{CP} = 3.7$ Hz), $(o-C-Mes^{*}_{Amin})$. - ¹H-NMR (C₆D₆): $\delta = 0.96$ (td, $J_{HP} = 20.0$, ${}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, 3 \text{H}, \text{CH}_{2}\text{CH}_{3}, 1.37 \text{ [s}, 9 \text{H}, p-\text{C}(\text{CH}_{3})_{3\text{Amin}}, 1.55 \text{ [s},$ 9H, p-C(CH₃)_{3Imin}], 1.81 (s, 9H) und 1.83 (s, 9H), o-C(CH₃)_{3Amin}, 1.92 [s, 18 H, o-C(CH₃)_{31min}], 2.52 (m, 2 H, CH₂CH₃), 6.67 (d, ${}^{3}J_{HH} = 17.2$ Hz, 1 H, PCHCH), 7.1 - 7.8 (m, 9 H, aromatische H), 7.72 (d, ${}^{3}J_{HH} =$ 17.2 Hz, 1H, PCHCH). – MS (180°C/50 eV), m/z (%): 712 (17) $[M^+]$, 683 (5) $[M^+ - Et]$, 655 (42) $[M^+ - Bu]$, 627 (21) $[M^+$ ${}^{t}Bu-C_{2}H_{4}$], 549 (87) [M $^{+}$ – EtPC $_{8}H_{7}$], 493 (65) [M $^{+}$ – Ph – 2 ${}^{t}Bu$ $-C_2H_4$], 422 (34) [M⁺ – Mes*NP], 366 (28) [M⁺ – Mes*NP – C_2H_4], 290 (100) [Mes*NP⁺], 57 (25) [^tBu⁺] und weitere Fragmente. $-C_{46}H_{70}N_2P_2$ (713.0): ber. 712.5014; gef. 712.5041 (MS).

[(Chlorethylphosphanyl)(2,4,6-tri-tert-butylphenyl)amino-[(2,4,6-tri-tert-butylphenyl)imino]phosphan (5b): 0.80 g (2.5 mmol) 3h werden in 5 ml Diethylether gelöst. Bei – 50 °C wird eine Lösung von 0.81 g (2.5 mmol) 3j in 5 ml Diethylether zugetropft. Nach Erwärmen auf Raumtemp, wird das Solvens i. Vak. entfernt. Das Rohprodukt wird aus Pentan/Ether (1:1) bei -20° C umkristallisiert. Ausb. 1.3 g (81%) gelbrote Kristalle, Schmp. 131-135°C. - ${}^{31}P{}^{1}H{}-NMR$ (C₆D₆): $\delta = 150.5$ (s, >P-), 297.1 (s, -P=). -¹³C{¹H}-NMR (C₆D₆): $\delta = 8.0$ (d, $J_{CP} = 14.3$ Hz, PCC), 25.8 (d, $J_{\rm CP} = 37.3$ Hz, PC), 31.6 (s, p-CC_{3Amin}), 32.0 (s, p-CC_{3Imin}), 33.2 (s, o-CC_{3Imin}), 34.0 (d, $J_{CP} = 5.1$ Hz) und 36.0 (t, $J_{CP} = 6.4$ Hz), (o-CC_{3Amin}), 34.8 (s, p-CC_{3Imin}), 35.1 (s, p-CC_{3Amin}), 36.7 (s, o-CC_{3Imin}), 38.5 (s) und 38.9 (s, o-CC_{3Amin}), 122.5 (s, m-C-Mestmin), 125.2 (s) und 126.7 (s, m-C-Mes^{*}_{Amin}), 136.3 (d, $J_{CP} = 7.4$ Hz, o-C-Mes^{*}_{Imin}), 142.4 (s, p-C-Mcs^{*}_{Imin}), 142.5 (d, $J_{CP} = 15.7$ Hz, *i*-C-Mes^{*}_{Imin}), 146.1 (d, $J_{CP} = 3.6 \text{ Hz}, i-C-\text{Mes}^*_{\text{Amin}}$, 149.2 (s, p-C-Mes^*_{\text{Amin}}), 148.8 (s, br) und 151.2 (d, $J_{CP} = 2.7 \text{ Hz}$) o-C-Mes^{*}_{Amin}. - ¹H-NMR (C₆D₆): $\delta = 1.19$ (m, 3H, CH₂CH₃), 1.48 [m, 18H, p-C(CH₃)₃], 1.50-1.85 [m, 36H, o-C(CH₃)₃], 2.32 (m, 2H, CH₂CH₃), 7.4-7.7 (m, 4H, Mes*H). -MS (180°C/50 eV), m/z (%): 325 (12) [MesNPC1⁺], 319 (15) [Mes*NPEt⁺], 290 (100 [Mes*NP⁺], 259 (27) [Mes*N⁺], 57 (84) [^tBu⁺] und weitere Fragmente. – $C_{38}H_{63}ClN_2P_2$ (645.3): ber. C 70.73, H 9.84, N 4.34; gef. C 71.21, H 9.88, N 4.60.

Kristallstrukturanalyse von **3f**, **4e**, **4f** und **5a**^[20]: Die Strukturbestimmung wurde mit dem Programm SHELXTL-Plus^[21a] durchgeführt. Alle Nicht-Wasserstoffatome wurden anisotrop, die H-Atome mit einem Reiter-Modell verfeinert. Das Gewichtsschema ist bei allen Rechnungen $w^{-1} = \sigma^2(F) + gF^2$. Bei Verbindung **3f** und 4f wurde eine empirische Absorptionskorrektur mit dem Programm DIFABS^[21b] durchgeführt, bei Verbindung 4e eine Extinktionskorrektur. Die absolute Struktur wurde bei Verbindung 4f durch η -Verfeinerung [$\eta = 0.77(6)$] bestimmt. Die hohen U_{ij} -Werte der *p*-lBu-Gruppen in Verbindung 5a deuten auf eine Tendenz zur dynamischen Fehlordnung hin. Tab. 4 gibt eine Zusammenfassung der Kristall- und Meßparameter sowie der Strukturlösung und -verfeinerung.

- * Herrn Professor Wolfgang Sundermeyer zum 65. Geburtstag gewidmet.
- Review: E. Niecke, D. Gudat, Angew. Chem. 1991, 103, 251-270; Angew. Chem. Int. Ed. Engl. 1991, 30, 217-237.
- ^[2] ^[2a] E. Niecke, R. Rüger, W. W. Schoeller, Angew. Chem. 1981, 93, 1110-1112; Angew. Chem. Int. Ed. Engl. 1981, 20, 1034-1036. ^[2b] E. Niecke, M. Lysek, E. Symalla, Chimia 1986, 40, 202-205. ^[2c] E. Niecke, D. Gudat, M. Leuer, M. Lysek, E. Symalla, Phosphorus Sulfur 1987, 30, 467-470.
- ^[3] E. Niecke, M. Link, M. Nieger, Chem. Ber. **1992**, 125, 2639-2640.
- ^[4] L. N. Markovskii, V. D. Romanenko, A. V. Ruban, J. Chem. Soc., Chem. Commun. 1983, 187-188.
 ^[5] [^{5a]} D. Gudat, H. M. Schiffner, M. Nieger, D. Stalke, A. J. Blake,
- ^[5] [^{5a}] D. Gudat, H. M. Schiffner, M. Nieger, D. Stalke, A. J. Blake, H. Grondey, E. Niecke, J. Am. Chem. Soc. **1992**, 114, 8857-8862. – ^[5b] D. Gudat, E. Niecke, B. Krebs, M. Dartmann, Organomet. **1986**, 5, 2376-2377.
- ^[6] Die Konstitution von 4 und 4' wurde mit Hilfe der ¹⁵N-NMR-Spektroskopie bestätigt; D. Gudat, unveröffentlichte Ergebnisse.
- ^[7] Diastereomere wurden bei bislang beschriebenen [2 + 1]-Cyclodimerisationen von Iminophosphanen nicht beobachtet^[2a,b].
- [8] E. Niecke, "Iminophosphines" in Multiple Bonds and Low Coordination in Phosphorus Chemistry (Hrsg.: M. Regitz, O. J. Scherer), Thieme Verlag, Stuttgart, New York, 1990, S. 293-320.
- ^[9] D. Gudat, E. Niecke in Phosphorus-31 NMR Spectral Properties in Compound Characterization and Structural Analysis (Hrsg.: L. Quinn, J. Verkade), VCH Publishers, Deerfield Beach, im Druck.
- A. N. Chernega, M. Yu. Antipin, Yu. T. Struchkov, A. V. Ruban,
 V. D. Romanenko, *Zh. Strukt. Khim.* 1987, 28, 105.
- [^{11]} W. W. Schoeller, T. Busch, J. Niemann, T. Dabisch, W. D. Stohrer, *Heteroatom Chem.* 1991, 2, 213-219.
- ^[12] E. Niecke, A. Nickloweit-Lüke, R. Rüger, Z. Naturforsch., Teil B, 1981, 36, 1566-1574.
- [13] Reviews: F. Mathey, Chem. Rev. 1990, 90, 997-1025; M. Baudler, Angew. Chem. 1982, 94, 520-539; Angew. Chem. Int. Ed. Engl. 1982, 21, 492-510.
- ^[14] R. Detsch, E. Niecke, M. Nieger, F. Reichert, Chem. Ber. 1992, 125, 321-330.
- ^[15] Eine vergleichbare Bindungssituation zeigt auch das (Phosphanylamino)iminophosphan (Ph₂C=N)₂P-N(Aryl)-P=N-Aryl (Aryl = Mes*): J. Hein, C. Gärtner-Winkhaus, M. Nieger, E. Niecke, *Heteroatom Chem.* **1991**, *2*, 409-415.
- ^[16] R. J. Cross, T. H. Green, R. Keat, J. Chem. Soc., Dalton Trans. 1976, 1424-1428; I. J. Colquhoun, W. McFarlane, *ibid*. 1977, 1674-1679.
- ^[17] M. Field, O. Stelzer, R. Schmutzler, Inorg. Synth. 1973, 14, 4-9.
- ^[18] K. Sasse, in Methoden Org. Chem. (Houben-Weyl), 4. Aufl.,
- 1982, Bd. 12 E1, S. 305.
 ¹⁹ E. Niccke, M. Nieger, F. Reichert, Angew. Chem. 1988, 100, 1781-1782; Angew. Chem. Int. Ed. Engl. 1988, 27, 1715-1716.
- ^[20] Weitere Einzelheiten zu den Kristallstrukturanalysen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57293, der Autoren und des Zeitschriftenzitats angefordert werden.
 ^[21] ^[21a] G. M. Sheldrick, SHELXTL-Plus (1989), Siemens Analyti-
- [21] [21a] G. M. Sheldrick, SHELXTL-Plus (1989), Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. –
 [21b] N. Walker, D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158–166.

[132/93]